CS193P - Lecture 5

iPhone Application Development

Views
Drawing
Animation

Tuesday, January 19, 2010

Announcements

* Assignment 1 grades are out. Contact Paul or Dave if you didn't
get yours

» Contact Paul or Dave if you need a loaner iPod Touch

* Assignments 2A and 2B due Wednesday, 1/20

Tuesday, January 19, 2010

Questions from Monday?

* Model, View, Controller
* Interface Builder & Nibs

* Delegate
- Allows one object to act on behalf of another object

* Target-Action

Tuesday, January 19, 2010

Today'’s Topics

* Views

* Drawing
 Text & Images
* Animation

Tuesday, January 19, 2010

Tuesday, January 19, 2010

View Fundamentals

 Rectangular area on screen

* Draws content

* Handles events

* Subclass of UIResponder (event handling class)

* Views arranged hierarchically
= every view has one superview

= every view has zero or more subviews

Tuesday, January 19, 2010

View Hierarchy - UIWindow

* Views live inside of a window

* UIWindow is actually just a view
- adds some additional functionality specific to top level view

* One UIWindow for an iPhone app
- Contains the entire view hierarchy

- Set up by default in Xcode template project

Tuesday, January 19, 2010

View Hierarchy - Manipulation

» Add/remove views in IB or using UlView methods
- (void)addSubview:(UIView *)view;
- (void)removeFromSuperview;

* Manipulate the view hierarchy manually:
- (void)insertSubview:(UIView *)view atIndex:(int)index;
- (void)insertSubview: (UIView *)view belowSubview:(UIView *)view;
- (void)insertSubview:(UIView *)view aboveSubview:(UIView *)view;

- (void)exchangeSubviewAtIndex:(int)index
withSubviewAtIndex:(int)otherIndex;

Tuesday, January 19, 2010

View Hierarchy - Ownership

 Superviews retain their subviews

* Not uncommon for views to only be retained by superview
- Be careful when removing!

- Retain subview before removing if you want to reuse it

* Views can be temporarily hidden
theView.hidden = YES;

Tuesday, January 19, 2010

View-related Structures

* CGPoint
- location in space: {x,y}

* CGSize
- dimensions: { width , height }

* CGRect
- location and dimension: { origin , size }

Tuesday, January 19, 2010

Rects, Points and Sizes

CGRect

origin CGPoint

: 80
size

54

CGSize

width 144

height 72

Tuesday, January 19, 2010 11

View-related Structure

Creation Function Example

CGPoint point = CGPointMake (100.0, 200.0);
CGPointMake (x, y) point.x = 300.0;
point.y = 30.0;

CGSize size = CGSizeMake (42.0, 11.0);
CGS1izeMake (width, height) size.width = 100.0;
size.height = 72.0;

CGRect rect = CGRectMake (100.0, 200.0,
CGRectMake (x, v, 42.0, 11.0);

width, height) rect.origin.x = 0.0
rect.size.width = 5

0.0;

Tuesday, January 19, 2010

UlView Coordinate System

- Origin in upper left corner
= y axis grows downwards

Tuesday, January 19, 2010

UlView Coordinate System

- Origin in upper left corner
= y axis grows downwards

Tuesday, January 19, 2010

Location and Size

* View’s location and size expressed in two ways
- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

View A frame;
origin: 0,0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

Tuesday, January 19, 2010

Location and Size

* View’s location and size expressed in two ways
- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

View A frame:
origin: 0,0
200, 100 size: 550 x 400
View A bounds:
origin: 0, 0
size: 550 x 400

Tuesday, January 19, 2010

Location and Size

* View’s location and size expressed in two ways

- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

200, 100

Tuesday, January 19, 2010

View A frame;
origin: 0,0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

View B frame:
origin: 200, 100
size: 200 x 250

View B bounds:
origin: 0,0
size: 200 x 250

Frame is Computed

200, 100

Tuesday, January 19, 2010

Bounds

Tuesday, January 19, 2010

Center

Tuesday, January 19, 2010

Center

300, 225

Tuesday, January 19, 2010

200, 100

Tuesday, January 19, 2010

Transform

* 45° Rotation

300,225 %

Tuesday, January 19, 2010

Frame

* The smallest rectangle in the superview’s coordinate system
that fully encompasses the view itself

Tuesday, January 19, 2010

Frame and Bounds

* Which to use?
- Usually depends on the context

* If you are using a view, typically you use frame
* If you are implementing a view, typically you use bounds

* Matter of perspective
- From outside it’s usually the frame

- From inside it’s usually the bounds

* Examples:
- Creating a view, positioning a view in superview - use frame

- Handling events, drawing a view - use bounds

Tuesday, January 19, 2010

Creating Views

Tuesday, January 19, 2010

Where do views come from?

« Commonly Interface Builder
* Drag out any of the existing view objects (buttons, labels, etc)
* Or drag generic UlView and set custom class

Library 8.0.0 Polygon View Identity

[Objects | Media | S

: ass Identity Number of sides:

8 Inputs & values Class PolygonView

) i e Wiews & =

[windows, Views & Bars TR
Decrease Increase

=+

Class Qutlets

Outlet

Tuesday, January 19, 2010

Manual Creation

* Views are initialized using -initWithFrame:
CGRect frame = CGRectMake(0, 0, 200, 150);

UIView *myView = [[UIView alloc] initWithFrame:frame];
* Example:

CGRect frame =
UILabel *1label

CGRectMake(20, 45, 140, 21);
= [[UILabel alloc] initWithFrame:frame];

[window addSubview:label];
[Llabel setText:@”’Number of sides:”];
[Label release]; // label now retained by window

Number of sides:) 5

Decrease Increase

Tuesday, January 19, 2010

Defining Custom Views

* Subclass UlView

* For custom drawing, you override:
- (void)drawRect:(CGRect)rect;

* For event handling, you override:

(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesMoved: (NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesEnded: (NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;

Tuesday, January 19, 2010

Drawing Views

Tuesday, January 19, 2010

- (void)drawRect:(CGRect)rect

* -[UIView drawRect:] does nothing by default
- If not overridden, then backgroundColor is used to fill

* Override - drawRect: to draw a custom view
- rect argument is area to draw

* When is it OK to call drawRect:?

Tuesday, January 19, 2010

Be Lazy

» drawRect: is invoked automatically
- Don't call it directly!

* Being lazy is good for performance

 When a view needs to be redrawn, use:
- (void)setNeedsDisplay;

* For example, in your controller:

- (void)setNumberOfSides:(int)sides {
number0fSides = sides;
[polygonView setNeedsDisplay];

Tuesday, January 19, 2010

CoreGraphics and Quartz 2D

» UIKit offers very basic drawing functionality

UIRectF11l1(CGRect rect);
UIRectFrame(CGRect rect);

» CoreGraphics: Drawing APIs
* CGis a C-based API, not Objective-C

* CG and Quartz 2D drawing engine define simple but powerful
graphics primitives
- Graphics context
- Transformations
- Paths
- Colors
- Fonts

= Painting operations

Tuesday, January 19, 2010

Graphics Contexts

* All drawing is done into an opaque graphics context
* Draws to screen, bitmap buffer, printer, PDF, etc.

» Graphics context setup automatically before invoking drawRect:
- Defines current path, line width, transform, etc.

- Access the graphics context within drawRect: by calling
(CGContextRef)UIGraphicsGetCurrentContext(void);

- Use CG calls to change settings

* Context only valid for current call to drawRect:
- Do not cache a CGContext!

Tuesday, January 19, 2010

CG Wrappers

« Some CG functionality wrapped by UIKit
* UlColor
- Convenience for common colors
- Easily set the fill and/or stroke colors when drawing

UIColor *redColor = [UIColor redColor];
[redColor set];
// drawing will be done 1n red

* UlFont
- Access system font
- Get font by name

ULIFont *font = [UIFont systemFontOfSize:14.0];
[myLabel setFont:font];

Tuesday, January 19, 2010

Simple drawRect: example

* Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);
[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);

Tuesday, January 19, 2010

Simple drawRect: example

* Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);

[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);

Tuesday, January 19, 2010

il Carrier

r.-l'l-..'

-

10:51 AM

Drawing More Complex Shapes

« Common steps for drawRect: are
- Get current graphics context

- Define a path

- Set a color

- Stroke or fill path

- Repeat, if necessary

Tuesday, January 19, 2010

Paths

 CoreGraphics paths define shapes

« Made up of lines, arcs, curves and rectangles

* Creation and drawing of paths are two distinct operations
- Define path first, then draw it

Tuesday, January 19, 2010

CGPath

 Two parallel sets of functions for using paths
- CGContext “convenience” throwaway functions

- CGPath functions for creating reusable paths

CGContext

CGContextMoveToPoint
CGContextAddLineToPoint

CGContextAddArcToPoint
CGContextClosePath

And soon andsoon...

CGPath

CGPathMoveToPoint
CGPathAddLineToPoint

CGPathAddArcToPoint
CGPathCloseSubPath

Tuesday, January 19, 2010

Simple Path Example

- (void)drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();

[[UIColor grayColor] set];
UIRectFill ([self bounds]);

-l Carrier < 11:07 AM
CGContextBeginPath (context);
CGContextMoveToPoint (context, 75, 10);
CGContextAddLineToPoint (context, 10, 150);
CGContextAddLineToPoint (context, 160, 150);
CGContextClosePath (context);

[[UIColor redColor] setFill];

[[UIColor blackColor] setStroke];
CGContextDrawPath (context, kCGPathFillStroke);

Tuesday, January 19, 2010

More Drawing Information

 UlView Class Reference

« CGContext Reference

* “Quartz 2D Programming Guide”

* Lots of samples in the iPhone Dev Center

Tuesday, January 19, 2010

Images & Text

Tuesday, January 19, 2010

Ullmage

» UIKit class representing an image

* Creating Ullmages:
- Fetching image in application bundle

- Use +[Ullmage imageNamed:(NSString *)name]

* Include file extension in file name, e.g. @"mylmage.jpg”
- Read from file on disk

= Use -[Ullmage initWithContentsOfFile:(NSString *)path]
- From data in memory

- Use -[Ullmage initWithData:(NSData *)data]

Tuesday, January 19, 2010

Creating Images from a Context

* Need to dynamically generate a bitmap image
« Same as drawing a view

* General steps
- Create a special CGGraphicsContext with a size

= Draw
- Capture the context as a bitmap
- Clean up

Tuesday, January 19, 2010

Bitmap Image Example

- (UIImage *)polygonImageOfSize:(CGSize)size {
UIImage *result = nil;

UIGraphicsBeginImageContext (size);
// call your drawing code...

result = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

return result;

Tuesday, January 19, 2010

Getting Image Data

* Given Ullmage, want PNG or JPG representation

NSData *UIImagePNGRepresentation (UIImage * image);
NSData *UIImageJPGRepresentation (UIImage * 1image);

* Ullmage also has a CGImage property which will give you a
CGlmageRef to use with CG calls

Tuesday, January 19, 2010

Drawing Text & Images

* You can draw Ullmages in -drawRect:

- [UIImage drawAtPoint:(CGPoint)point]
- [UIImage drawInRect:(CGRect)rect]
- [UIImage drawAsPatternInRect:(CGRect)rect]

* You can draw NSString in -drawRect:

- [NSString drawAtPoint:(CGPoint)point withFont:(UIFont *)font]

But there is a better way!

Tuesday, January 19, 2010

Text, Images, and UIKit views

Tuesday, January 19, 2010

Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

Decrease Increase

Tuesday, January 19, 2010

Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

e Goal

- PolygonView that displays shape Decrease] | Increase
as well as name

Tuesday, January 19, 2010

Constructing Views

* How do | implement this?

e Goal

- PolygonView that displays shape
as well as name

* Initial thought
- Have PolygonView draw the text

- Inefficient when animating

Tuesday, January 19, 2010

-l Carrier =

2:31 PM

Number of sides: 8

Decrease

Increase

Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

e Goal

- PolygonView that displays shape Decrease] | Increase
as well as name

* Initial thought
- Have PolygonView draw the text

- Inefficient when animating

* Instead use UlLabel!
- Tastes great

- Less filling

Tuesday, January 19, 2010

UlLabel

e UlView subclass that knows how to draw text

* Properties include:
- font

= textColor
- shadow (offset & color)

- textAlignment

Tuesday, January 19, 2010

UllmageView

 UlView that draws Ullmages

* Properties include:
- image
- animatedlmages
- animatedDuration

- animatedRepeatCount

» contentMode property to align and scale image wrt bounds

Tuesday, January 19, 2010

UlControl

* UlView with Target-Action event handling

* Properties include:
- enabled

= selected
- highlighted

* UIButton: font, title, titleColor, image, backgroundimage

 UlTextField: font, text, placeholder, textColor

* See UIKit headers for plenty more

Tuesday, January 19, 2010

View Properties & Animation

Tuesday, January 19, 2010

Animating Views

« What if you want to change layout dynamically?

 For example, a switch to disclose additional views...

Tuesday, January 19, 2010

il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options:

Animating Views

« What if you want to change layout dynamically?
 For example, a switch to disclose additional views...

il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options: m

Tuesday, January 19, 2010

Animating Views

« What if you want to change layout dynamically?
 For example, a switch to disclose additional views...

il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options:

Line width: o—

Line caps: Square

Tuesday, January 19, 2010

UlView Animations

 UlView supports a number of animatable properties
- frame, bounds, center, alpha, transform

* Create “blocks” around changes to animatable properties

* Animations run asynchronously and automatically

Tuesday, January 19, 2010

Other Animation Options

 Additional animation options
- delay before starting

- start at specific time

- curve (ease in/out, ease in, ease out, linear)

- repeat count

- autoreverses (e.g. ping pong back and forth)

Tuesday, January 19, 2010

View Animation Example

- (void)showAdvancedOptions {
// assume polygonView and optionsView

[UIView beginAnimations:@”’advancedAnimations” context:nil];
[UIView setAnimationDuration:0.3];

// make optionsView visible (alpha 1is currently 0.0)
optionsView.alpha = 1.0;

// move the polygonView down
CGRect polygonFrame = polygonView.frame;

polygonFrame.origin.y += 200;
polygonView. frame = polygonFrame;

[UIView commitAnimations];

Tuesday, January 19, 2010

Knowing When Animations Finish

 UlView animations allow for a delegate
[UIView setAnimationDelegate:myController];

« myController will have callbacks invoked before and after
- (void)animationWillStart:(NSString *)animationID
context:(void *)context;

- (void)animationDidStop:(NSString *)animationID
finished:(NSNumber *)finished
context:(void *)context;

» Can provide custom selectors if desired, for example
[UIView setAnimationWillStartSelector:
@selector(animationWillStart)];
[UIView setAnimationDidStopSelector:
@selector(animationDidStop)];

Tuesday, January 19, 2010

How Does It Work?

* |s drawRect: invoked repeatedly?

* Do | have to run some kind of timer in order to drive the
animation?

* Is it magic?

Tuesday, January 19, 2010

Core Animation

» Hardware accelerated rendering engine
» UlViews are backed by “layers”

e -drawRect: results are cached
« Cached results used to render view

- -drawRect: called only when contents change

- Layers drawn from a separate render tree managed by separate
process

* Property animations done automatically by manipulating layers

Tuesday, January 19, 2010

View Transforms

* Every view has a transform property
- used to apply scaling, rotation and translation to a view

* Default “Identity transform”

« CGAffineTransform structure used to represent transform
» Use CG functions to create, modify transforms

CGAffineTransform Functions (just a small example set)

CGAffineTransformScale (transform, xScale, yScale)

CGAffineTransformRotate (transform, angle)

CGAffineTransformTranslate (transform, xDelta, yDelta)

Tuesday, January 19, 2010

More Animation Information

* iPhone OS Programming Guide
- “Modifying Views at Runtime” section

* Core Animation Programming Guide

Tuesday, January 19, 2010

Assignment 3 Hints

Tuesday, January 19, 2010

Saving State Across App Launches

* NSUserDefaults to read and write prefs & state

* Singleton object:
+ (NSUserDefaults *)standardUserDefaults;

* Methods for storing & fetching common types:

- (1nt)integerForKey:(NSString *)key;
- (void)setInteger:(int)value forKey:(NSString *)key;

- (1d)objectForKey:(NSString *)key;
- (void)setObject:(1d)value forKey:(NSString *)key;

* Find an appropriate time to store and restore your state

Tuesday, January 19, 2010

Questions?

Tuesday, January 19, 2010

