CS193P - Lecture 5

iPhone Application Development

Views
Drawing
Animation

Tuesday, January 19, 2010



Announcements

* Assignment 1 grades are out. Contact Paul or Dave if you didn't
get yours

» Contact Paul or Dave if you need a loaner iPod Touch

* Assignments 2A and 2B due Wednesday, 1/20
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Questions from Monday?

* Model, View, Controller
* Interface Builder & Nibs

* Delegate
- Allows one object to act on behalf of another object

* Target-Action
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Today'’s Topics

* Views

* Drawing
 Text & Images
* Animation
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View Fundamentals

 Rectangular area on screen

* Draws content

* Handles events

* Subclass of UIResponder (event handling class)

* Views arranged hierarchically
= every view has one superview

= every view has zero or more subviews
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View Hierarchy - UIWindow

* Views live inside of a window

* UIWindow is actually just a view
- adds some additional functionality specific to top level view

* One UIWindow for an iPhone app
- Contains the entire view hierarchy

- Set up by default in Xcode template project
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View Hierarchy - Manipulation

» Add/remove views in IB or using UlView methods
- (void)addSubview:(UIView *)view;
- (void)removeFromSuperview;

* Manipulate the view hierarchy manually:
- (void)insertSubview:(UIView *)view atIndex:(int)index;
- (void)insertSubview: (UIView *)view belowSubview:(UIView *)view;
- (void)insertSubview:(UIView *)view aboveSubview:(UIView *)view;

- (void)exchangeSubviewAtIndex:(int)index
withSubviewAtIndex:(int)otherIndex;
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View Hierarchy - Ownership

 Superviews retain their subviews

* Not uncommon for views to only be retained by superview
- Be careful when removing!

- Retain subview before removing if you want to reuse it

* Views can be temporarily hidden
theView.hidden = YES;
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View-related Structures

* CGPoint
- location in space: {x,y}

* CGSize
- dimensions: { width , height }

* CGRect
- location and dimension: { origin , size }
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Rects, Points and Sizes

CGRect

origin CGPoint

: 80
size

54

CGSize

width 144

height 72
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View-related Structure

Creation Function Example

CGPoint point = CGPointMake (100.0, 200.0);
CGPointMake (x, y) point.x = 300.0;
point.y = 30.0;

CGSize size = CGSizeMake (42.0, 11.0);
CGS1izeMake (width, height) size.width = 100.0;
size.height = 72.0;

CGRect rect = CGRectMake (100.0, 200.0,
CGRectMake (x, v, 42.0, 11.0);

width, height) rect.origin.x = 0.0
rect.size.width = 5

0.0;
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UlView Coordinate System

- Origin in upper left corner
= y axis grows downwards
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UlView Coordinate System

- Origin in upper left corner
= y axis grows downwards
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Location and Size

* View’s location and size expressed in two ways
- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

View A frame;
origin: 0,0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400
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Location and Size

* View’s location and size expressed in two ways
- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

View A frame:
origin: 0,0
200, 100 size: 550 x 400
View A bounds:
origin: 0, 0
size: 550 x 400
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Location and Size

* View’s location and size expressed in two ways

- Frame is in superview’s coordinate system

- Bounds is in local coordinate system
0,0 550

200, 100
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View A frame;
origin: 0,0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

View B frame:
origin: 200, 100
size: 200 x 250

View B bounds:
origin: 0,0
size: 200 x 250




Frame is Computed

200, 100
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Bounds
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Center

Tuesday, January 19, 2010




Center

300, 225
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200, 100

Tuesday, January 19, 2010




Transform

* 45° Rotation

300,225 %
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Frame

* The smallest rectangle in the superview’s coordinate system
that fully encompasses the view itself
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Frame and Bounds

* Which to use?
- Usually depends on the context

* If you are using a view, typically you use frame
* If you are implementing a view, typically you use bounds

* Matter of perspective
- From outside it’s usually the frame

- From inside it’s usually the bounds

* Examples:
- Creating a view, positioning a view in superview - use frame

- Handling events, drawing a view - use bounds
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Creating Views
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Where do views come from?

« Commonly Interface Builder
* Drag out any of the existing view objects (buttons, labels, etc)
* Or drag generic UlView and set custom class

Library 8.0.0 Polygon View Identity

[ Objects | Media | S

: ass Identity Number of sides:

8 Inputs & values Class PolygonView

) i e Wiews & =

[ windows, Views & Bars TR
Decrease Increase

=+

Class Qutlets

Outlet
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Manual Creation

* Views are initialized using -initWithFrame:
CGRect frame = CGRectMake(0, 0, 200, 150);

UIView *myView = [[UIView alloc] initWithFrame:frame];
* Example:

CGRect frame =
UILabel *1label

CGRectMake(20, 45, 140, 21);
= [[UILabel alloc] initWithFrame:frame];

[window addSubview:label];
[Llabel setText:@”’Number of sides:”];
[Label release]; // label now retained by window

Number of sides: ) 5

Decrease Increase
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Defining Custom Views

* Subclass UlView

* For custom drawing, you override:
- (void)drawRect:(CGRect)rect;

* For event handling, you override:

(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesMoved: (NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesEnded: (NSSet *)touches withEvent:(UIEvent *)event;
(void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;
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Drawing Views
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- (void)drawRect:(CGRect)rect

* -[UIView drawRect:] does nothing by default
- If not overridden, then backgroundColor is used to fill

* Override - drawRect: to draw a custom view
- rect argument is area to draw

* When is it OK to call drawRect:?

Tuesday, January 19, 2010



Be Lazy

» drawRect: is invoked automatically
- Don't call it directly!

* Being lazy is good for performance

 When a view needs to be redrawn, use:
- (void)setNeedsDisplay;

* For example, in your controller:

- (void)setNumberOfSides:(int)sides {
number0fSides = sides;
[polygonView setNeedsDisplay];
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CoreGraphics and Quartz 2D

» UIKit offers very basic drawing functionality

UIRectF11l1(CGRect rect);
UIRectFrame(CGRect rect);

» CoreGraphics: Drawing APIs
* CGis a C-based API, not Objective-C

* CG and Quartz 2D drawing engine define simple but powerful
graphics primitives
- Graphics context
- Transformations
- Paths
- Colors
- Fonts

= Painting operations
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Graphics Contexts

* All drawing is done into an opaque graphics context
* Draws to screen, bitmap buffer, printer, PDF, etc.

» Graphics context setup automatically before invoking drawRect:
- Defines current path, line width, transform, etc.

- Access the graphics context within drawRect: by calling
(CGContextRef)UIGraphicsGetCurrentContext(void);

- Use CG calls to change settings

* Context only valid for current call to drawRect:
- Do not cache a CGContext!
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CG Wrappers

« Some CG functionality wrapped by UIKit
* UlColor
- Convenience for common colors
- Easily set the fill and/or stroke colors when drawing

UIColor *redColor = [UIColor redColor];
[redColor set];
// drawing will be done 1n red

* UlFont
- Access system font
- Get font by name

ULIFont *font = [UIFont systemFontOfSize:14.0];
[myLabel setFont:font];
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Simple drawRect: example

* Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);
[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);
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Simple drawRect: example

* Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);

[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);
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Drawing More Complex Shapes

« Common steps for drawRect: are
- Get current graphics context

- Define a path

- Set a color

- Stroke or fill path

- Repeat, if necessary
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Paths

 CoreGraphics paths define shapes

« Made up of lines, arcs, curves and rectangles

* Creation and drawing of paths are two distinct operations
- Define path first, then draw it
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CGPath

 Two parallel sets of functions for using paths
- CGContext “convenience” throwaway functions

- CGPath functions for creating reusable paths

CGContext

CGContextMoveToPoint
CGContextAddLineToPoint

CGContextAddArcToPoint
CGContextClosePath

And soon andsoon...

CGPath

CGPathMoveToPoint
CGPathAddLineToPoint

CGPathAddArcToPoint
CGPathCloseSubPath
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Simple Path Example

- (void)drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();

[[UIColor grayColor] set];
UIRectFill ([self bounds]);

-l Carrier < 11:07 AM
CGContextBeginPath (context);
CGContextMoveToPoint (context, 75, 10);
CGContextAddLineToPoint (context, 10, 150);
CGContextAddLineToPoint (context, 160, 150);
CGContextClosePath (context);

[[UIColor redColor] setFill];

[[UIColor blackColor] setStroke];
CGContextDrawPath (context, kCGPathFillStroke);
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More Drawing Information

 UlView Class Reference

« CGContext Reference

* “Quartz 2D Programming Guide”

* Lots of samples in the iPhone Dev Center
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Images & Text
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Ullmage

» UIKit class representing an image

* Creating Ullmages:
- Fetching image in application bundle

- Use +[Ullmage imageNamed:(NSString *)name]

* Include file extension in file name, e.g. @"mylmage.jpg”
- Read from file on disk

= Use -[Ullmage initWithContentsOfFile:(NSString *)path]
- From data in memory

- Use -[Ullmage initWithData:(NSData *)data]
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Creating Images from a Context

* Need to dynamically generate a bitmap image
« Same as drawing a view

* General steps
- Create a special CGGraphicsContext with a size

= Draw
- Capture the context as a bitmap
- Clean up
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Bitmap Image Example

- (UIImage *)polygonImageOfSize:(CGSize)size {
UIImage *result = nil;

UIGraphicsBeginImageContext (size);
// call your drawing code...

result = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

return result;
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Getting Image Data

* Given Ullmage, want PNG or JPG representation

NSData *UIImagePNGRepresentation (UIImage * image);
NSData *UIImageJPGRepresentation (UIImage * 1image);

* Ullmage also has a CGImage property which will give you a
CGlmageRef to use with CG calls
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Drawing Text & Images

* You can draw Ullmages in -drawRect:

- [UIImage drawAtPoint:(CGPoint)point]
- [UIImage drawInRect:(CGRect)rect]
- [UIImage drawAsPatternInRect:(CGRect)rect]

* You can draw NSString in -drawRect:

- [NSString drawAtPoint:(CGPoint)point withFont:(UIFont *)font]

But there is a better way!
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Text, Images, and UIKit views
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Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

Decrease Increase
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Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

e Goal

- PolygonView that displays shape Decrease ] | Increase
as well as name
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Constructing Views

* How do | implement this?

e Goal

- PolygonView that displays shape
as well as name

* Initial thought
- Have PolygonView draw the text

- Inefficient when animating
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Constructing Views

* How do | implement this?

-l Carrier < 2:31 PM

Number of sides: 8

e Goal

- PolygonView that displays shape Decrease ] | Increase
as well as name

* Initial thought
- Have PolygonView draw the text

- Inefficient when animating

* Instead use UlLabel!
- Tastes great

- Less filling
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UlLabel

e UlView subclass that knows how to draw text

* Properties include:
- font

= textColor
- shadow (offset & color)

- textAlignment
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UllmageView

 UlView that draws Ullmages

* Properties include:
- image
- animatedlmages
- animatedDuration

- animatedRepeatCount

» contentMode property to align and scale image wrt bounds
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UlControl

* UlView with Target-Action event handling

* Properties include:
- enabled

= selected
- highlighted

* UIButton: font, title, titleColor, image, backgroundimage

 UlTextField: font, text, placeholder, textColor

* See UIKit headers for plenty more
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View Properties & Animation
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Animating Views

« What if you want to change layout dynamically?

 For example, a switch to disclose additional views...
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il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options:




Animating Views

« What if you want to change layout dynamically?
 For example, a switch to disclose additional views...

il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options: m
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Animating Views

« What if you want to change layout dynamically?
 For example, a switch to disclose additional views...

il Carrier = 12:11 PM

Mumber of sides: 5

Decrease Increase

Advanced Options:

Line width: o—

Line caps: Square
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UlView Animations

 UlView supports a number of animatable properties
- frame, bounds, center, alpha, transform

* Create “blocks” around changes to animatable properties

* Animations run asynchronously and automatically
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Other Animation Options

 Additional animation options
- delay before starting

- start at specific time

- curve (ease in/out, ease in, ease out, linear)

- repeat count

- autoreverses (e.g. ping pong back and forth)
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View Animation Example

- (void)showAdvancedOptions {
// assume polygonView and optionsView

[UIView beginAnimations:@”’advancedAnimations” context:nil];
[UIView setAnimationDuration:0.3];

// make optionsView visible (alpha 1is currently 0.0)
optionsView.alpha = 1.0;

// move the polygonView down
CGRect polygonFrame = polygonView.frame;

polygonFrame.origin.y += 200;
polygonView. frame = polygonFrame;

[UIView commitAnimations];
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Knowing When Animations Finish

 UlView animations allow for a delegate
[UIView setAnimationDelegate:myController];

« myController will have callbacks invoked before and after
- (void)animationWillStart:(NSString *)animationID
context:(void *)context;

- (void)animationDidStop:(NSString *)animationID
finished:(NSNumber *)finished
context:(void *)context;

» Can provide custom selectors if desired, for example
[UIView setAnimationWillStartSelector:
@selector(animationWillStart)];
[UIView setAnimationDidStopSelector:
@selector(animationDidStop)];
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How Does It Work?

* |s drawRect: invoked repeatedly?

* Do | have to run some kind of timer in order to drive the
animation?

* Is it magic?
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Core Animation

» Hardware accelerated rendering engine
» UlViews are backed by “layers”

e -drawRect: results are cached
« Cached results used to render view

- -drawRect: called only when contents change

- Layers drawn from a separate render tree managed by separate
process

* Property animations done automatically by manipulating layers
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View Transforms

* Every view has a transform property
- used to apply scaling, rotation and translation to a view

* Default “Identity transform”

« CGAffineTransform structure used to represent transform
» Use CG functions to create, modify transforms

CGAffineTransform Functions (just a small example set)

CGAffineTransformScale (transform, xScale, yScale)

CGAffineTransformRotate (transform, angle)

CGAffineTransformTranslate (transform, xDelta, yDelta)
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More Animation Information

* iPhone OS Programming Guide
- “Modifying Views at Runtime” section

* Core Animation Programming Guide
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Assignment 3 Hints
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Saving State Across App Launches

* NSUserDefaults to read and write prefs & state

* Singleton object:
+ (NSUserDefaults *)standardUserDefaults;

* Methods for storing & fetching common types:

- (1nt)integerForKey:(NSString *)key;
- (void)setInteger:(int)value forKey:(NSString *)key;

- (1d)objectForKey:(NSString *)key;
- (void)setObject:(1d)value forKey:(NSString *)key;

* Find an appropriate time to store and restore your state
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Questions?
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