
CS193P - Lecture 5
iPhone Application Development

Views
Drawing
Animation

1Tuesday, January 19, 2010

Announcements

• Assignment 1 grades are out. Contact Paul or Dave if you didn’t
get yours

• Contact Paul or Dave if you need a loaner iPod Touch

• Assignments 2A and 2B due Wednesday, 1/20

2Tuesday, January 19, 2010

Questions from Monday?
• Model, View, Controller

• Interface Builder & Nibs

• Delegate
■ Allows one object to act on behalf of another object

• Target-Action

3Tuesday, January 19, 2010

Today’s Topics
• Views
• Drawing
• Text & Images
• Animation

4Tuesday, January 19, 2010

Views

5Tuesday, January 19, 2010

View Fundamentals
• Rectangular area on screen

• Draws content

• Handles events

• Subclass of UIResponder (event handling class)

• Views arranged hierarchically
■ every view has one superview
■ every view has zero or more subviews

6Tuesday, January 19, 2010

View Hierarchy - UIWindow
• Views live inside of a window

• UIWindow is actually just a view
■ adds some additional functionality specific to top level view

• One UIWindow for an iPhone app
■ Contains the entire view hierarchy
■ Set up by default in Xcode template project

7Tuesday, January 19, 2010

View Hierarchy - Manipulation
• Add/remove views in IB or using UIView methods
	 - (void)addSubview:(UIView *)view;
	 - (void)removeFromSuperview;

• Manipulate the view hierarchy manually:
	 - (void)insertSubview:(UIView *)view atIndex:(int)index;
	 - (void)insertSubview:(UIView *)view belowSubview:(UIView *)view;
	 - (void)insertSubview:(UIView *)view aboveSubview:(UIView *)view;
	 - (void)exchangeSubviewAtIndex:(int)index
 withSubviewAtIndex:(int)otherIndex;

8Tuesday, January 19, 2010

View Hierarchy - Ownership
• Superviews retain their subviews

• Not uncommon for views to only be retained by superview
■ Be careful when removing!
■ Retain subview before removing if you want to reuse it

• Views can be temporarily hidden
 theView.hidden = YES;

9Tuesday, January 19, 2010

View-related Structures
• CGPoint

■ location in space: { x , y }

• CGSize
■ dimensions: { width , height }

• CGRect
■ location and dimension: { origin , size }

10Tuesday, January 19, 2010

Rects, Points and Sizes

CGSizeCGSize

width 144

height 72

CGRectCGRect

origin

size

CGPointCGPoint

x 80

y 54

72

144

80

54

(0, 0) x

y

11Tuesday, January 19, 2010

View-related Structure

Creation Function Example

CGPointMake (x, y)
CGPoint point = CGPointMake (100.0, 200.0);
point.x = 300.0;
point.y = 30.0;

CGSizeMake (width, height)
CGSize size = CGSizeMake (42.0, 11.0);
size.width = 100.0;
size.height = 72.0;

CGRectMake (x, y,
 width, height)

CGRect rect = CGRectMake (100.0, 200.0,
 42.0, 11.0);
rect.origin.x = 0.0;
rect.size.width = 50.0;

12Tuesday, January 19, 2010

UIView Coordinate System

+x

+y

0, 0

■ Origin in upper left corner
■ y axis grows downwards

13Tuesday, January 19, 2010

UIView Coordinate System

+x

+y

UIView

0, 0

■ Origin in upper left corner
■ y axis grows downwards

13Tuesday, January 19, 2010

Location and Size
• View’s location and size expressed in two ways

■ Frame is in superview’s coordinate system
■ Bounds is in local coordinate system

View A

0, 0 550

400

View A frame:
origin: 0, 0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

14Tuesday, January 19, 2010

Location and Size
• View’s location and size expressed in two ways

■ Frame is in superview’s coordinate system
■ Bounds is in local coordinate system

View A

View B

0, 0 550

400

View A frame:
origin: 0, 0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

200, 100

14Tuesday, January 19, 2010

Location and Size
• View’s location and size expressed in two ways

■ Frame is in superview’s coordinate system
■ Bounds is in local coordinate system

View A

View B

0, 0 550

400

View A frame:
origin: 0, 0
size: 550 x 400

View A bounds:
origin: 0, 0
size: 550 x 400

View B frame:
origin: 200, 100
size: 200 x 250

0, 0
200

250

200, 100

View B bounds:
origin: 0, 0
size: 200 x 250

14Tuesday, January 19, 2010

Frame is Computed

View A

View B

200

250

200, 100

15Tuesday, January 19, 2010

Bounds

View A

View B

200

250

0, 0

16Tuesday, January 19, 2010

Center

View A

View B

200

250

0, 0

17Tuesday, January 19, 2010

Center

View A

View B300, 225

200

250

0, 0

17Tuesday, January 19, 2010

Frame

View A

View B

200

250

200, 100

300, 225

18Tuesday, January 19, 2010

Transform
• 45° Rotation

View A

View B
300, 225

200250

0, 0

19Tuesday, January 19, 2010

Frame
• The smallest rectangle in the superview’s coordinate system

that fully encompasses the view itself

View A

View B
300, 225

200250

0, 0

320

320

140, 65

20Tuesday, January 19, 2010

Frame and Bounds
• Which to use?

■ Usually depends on the context

• If you are using a view, typically you use frame
• If you are implementing a view, typically you use bounds

• Matter of perspective
■ From outside it’s usually the frame
■ From inside it’s usually the bounds

• Examples:
■ Creating a view, positioning a view in superview - use frame
■ Handling events, drawing a view - use bounds

21Tuesday, January 19, 2010

Creating Views

22Tuesday, January 19, 2010

Where do views come from?
• Commonly Interface Builder
• Drag out any of the existing view objects (buttons, labels, etc)
• Or drag generic UIView and set custom class

23Tuesday, January 19, 2010

Manual Creation
• Views are initialized using -initWithFrame:
	 	 CGRect frame = CGRectMake(0, 0, 200, 150);

	 	 UIView *myView = [[UIView alloc] initWithFrame:frame];

• Example:
	 	 CGRect frame = CGRectMake(20, 45, 140, 21);
	 	 UILabel *label = [[UILabel alloc] initWithFrame:frame];

	 	 [window addSubview:label];
	 	 [label setText:@”Number of sides:”];
	 	 [label release]; // label now retained by window

24Tuesday, January 19, 2010

Defining Custom Views
• Subclass UIView

• For custom drawing, you override:
	 	 	 	 - (void)drawRect:(CGRect)rect;

• For event handling, you override:
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;

25Tuesday, January 19, 2010

Drawing Views

26Tuesday, January 19, 2010

- (void)drawRect:(CGRect)rect
• -[UIView drawRect:] does nothing by default

■ If not overridden, then backgroundColor is used to fill

• Override - drawRect: to draw a custom view
■ rect argument is area to draw

• When is it OK to call drawRect:?

27Tuesday, January 19, 2010

Be Lazy
• drawRect: is invoked automatically

■ Don’t call it directly!

• Being lazy is good for performance

• When a view needs to be redrawn, use:
	 	- (void)setNeedsDisplay;

• For example, in your controller:
	 	- (void)setNumberOfSides:(int)sides {
	 	 	 	 	 	 numberOfSides = sides;
	 	 	 	 	 	 [polygonView setNeedsDisplay];
	 	}

28Tuesday, January 19, 2010

CoreGraphics and Quartz 2D
• UIKit offers very basic drawing functionality

 UIRectFill(CGRect rect);
	 	 	 	 UIRectFrame(CGRect rect);

• CoreGraphics: Drawing APIs
• CG is a C-based API, not Objective-C
• CG and Quartz 2D drawing engine define simple but powerful

graphics primitives
■ Graphics context
■ Transformations
■ Paths
■ Colors
■ Fonts
■ Painting operations

29Tuesday, January 19, 2010

Graphics Contexts
• All drawing is done into an opaque graphics context

• Draws to screen, bitmap buffer, printer, PDF, etc.

• Graphics context setup automatically before invoking drawRect:
■ Defines current path, line width, transform, etc.
■ Access the graphics context within drawRect: by calling
	 	 (CGContextRef)UIGraphicsGetCurrentContext(void);

■ Use CG calls to change settings

• Context only valid for current call to drawRect:
■ Do not cache a CGContext!

30Tuesday, January 19, 2010

CG Wrappers
• Some CG functionality wrapped by UIKit
• UIColor

■ Convenience for common colors
■ Easily set the fill and/or stroke colors when drawing

 UIColor *redColor = [UIColor redColor];
	 	 	 [redColor set];
	 	 	 // drawing will be done in red

• UIFont
■ Access system font
■ Get font by name

	 	 	 UIFont *font = [UIFont systemFontOfSize:14.0];
	 	 	 [myLabel setFont:font];

31Tuesday, January 19, 2010

Simple drawRect: example
• Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);
[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);

}

32Tuesday, January 19, 2010

Simple drawRect: example
• Draw a solid color and shape

- (void)drawRect:(CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);
[[UIColor redColor] set];
UIRectFill (square);

[[UIColor blackColor] set];
UIRectFrame (square);

}

32Tuesday, January 19, 2010

Drawing More Complex Shapes
• Common steps for drawRect: are

■ Get current graphics context
■ Define a path
■ Set a color
■ Stroke or fill path
■ Repeat, if necessary

33Tuesday, January 19, 2010

Paths
• CoreGraphics paths define shapes
• Made up of lines, arcs, curves and rectangles
• Creation and drawing of paths are two distinct operations

■ Define path first, then draw it

34Tuesday, January 19, 2010

CGPath
• Two parallel sets of functions for using paths

■ CGContext “convenience” throwaway functions
■ CGPath functions for creating reusable paths

CGContext CGPath
CGContextMoveToPoint CGPathMoveToPoint

CGContextAddLineToPoint CGPathAddLineToPoint

CGContextAddArcToPoint CGPathAddArcToPoint

CGContextClosePath CGPathCloseSubPath

 And so on and so on . . . And so on and so on . . .

35Tuesday, January 19, 2010

Simple Path Example
- (void)drawRect:(CGRect)rect {

CGContextRef context = UIGraphicsGetCurrentContext();

[[UIColor grayColor] set];
UIRectFill ([self bounds]);

CGContextBeginPath (context);
CGContextMoveToPoint (context, 75, 10);
CGContextAddLineToPoint (context, 10, 150);
CGContextAddLineToPoint (context, 160, 150);
CGContextClosePath (context);

[[UIColor redColor] setFill];
[[UIColor blackColor] setStroke];
CGContextDrawPath (context, kCGPathFillStroke);

}

36Tuesday, January 19, 2010

More Drawing Information
• UIView Class Reference
• CGContext Reference
• “Quartz 2D Programming Guide”
• Lots of samples in the iPhone Dev Center

37Tuesday, January 19, 2010

Images & Text

38Tuesday, January 19, 2010

UIImage
• UIKit class representing an image

• Creating UIImages:
■ Fetching image in application bundle

■ Use +[UIImage imageNamed:(NSString *)name]
■ Include file extension in file name, e.g. @”myImage.jpg”

■ Read from file on disk
■ Use -[UIImage initWithContentsOfFile:(NSString *)path]

■ From data in memory
■ Use -[UIImage initWithData:(NSData *)data]

39Tuesday, January 19, 2010

Creating Images from a Context
• Need to dynamically generate a bitmap image

• Same as drawing a view

• General steps
■ Create a special CGGraphicsContext with a size
■ Draw
■ Capture the context as a bitmap
■ Clean up

40Tuesday, January 19, 2010

Bitmap Image Example
- (UIImage *)polygonImageOfSize:(CGSize)size {
		 UIImage *result = nil;

		 UIGraphicsBeginImageContext (size);
		
		 // call your drawing code...

		 result = UIGraphicsGetImageFromCurrentContext();

		 UIGraphicsEndImageContext();

		 return result;
}

41Tuesday, January 19, 2010

Getting Image Data
• Given UIImage, want PNG or JPG representation
	 	 	 NSData *UIImagePNGRepresentation (UIImage * image);
	 	 	 NSData *UIImageJPGRepresentation (UIImage * image);

• UIImage also has a CGImage property which will give you a
CGImageRef to use with CG calls

42Tuesday, January 19, 2010

Drawing Text & Images
• You can draw UIImages in -drawRect:

- [UIImage drawAtPoint:(CGPoint)point]
- [UIImage drawInRect:(CGRect)rect]
- [UIImage drawAsPatternInRect:(CGRect)rect]

• You can draw NSString in -drawRect:

- [NSString drawAtPoint:(CGPoint)point withFont:(UIFont *)font]

But there is a better way!

43Tuesday, January 19, 2010

Text, Images, and UIKit views

44Tuesday, January 19, 2010

Constructing Views
• How do I implement this?

45Tuesday, January 19, 2010

Constructing Views
• How do I implement this?

• Goal
■ PolygonView that displays shape

as well as name

45Tuesday, January 19, 2010

Constructing Views
• How do I implement this?

• Goal
■ PolygonView that displays shape

as well as name

• Initial thought
■ Have PolygonView draw the text
■ Inefficient when animating

45Tuesday, January 19, 2010

Constructing Views
• How do I implement this?

• Goal
■ PolygonView that displays shape

as well as name

• Initial thought
■ Have PolygonView draw the text
■ Inefficient when animating

• Instead use UILabel!
■ Tastes great
■ Less filling

45Tuesday, January 19, 2010

UILabel
• UIView subclass that knows how to draw text

• Properties include:
■ font
■ textColor
■ shadow (offset & color)
■ textAlignment

46Tuesday, January 19, 2010

UIImageView
• UIView that draws UIImages

• Properties include:
■ image
■ animatedImages
■ animatedDuration
■ animatedRepeatCount

• contentMode property to align and scale image wrt bounds

47Tuesday, January 19, 2010

UIControl
• UIView with Target-Action event handling

• Properties include:
■ enabled
■ selected
■ highlighted

• UIButton: font, title, titleColor, image, backgroundImage
• UITextField: font, text, placeholder, textColor

• See UIKit headers for plenty more

48Tuesday, January 19, 2010

View Properties & Animation

49Tuesday, January 19, 2010

Animating Views
• What if you want to change layout dynamically?
• For example, a switch to disclose additional views...

50Tuesday, January 19, 2010

Animating Views
• What if you want to change layout dynamically?
• For example, a switch to disclose additional views...

50Tuesday, January 19, 2010

Animating Views
• What if you want to change layout dynamically?
• For example, a switch to disclose additional views...

50Tuesday, January 19, 2010

UIView Animations
• UIView supports a number of animatable properties

■ frame, bounds, center, alpha, transform

• Create “blocks” around changes to animatable properties

• Animations run asynchronously and automatically

51Tuesday, January 19, 2010

Other Animation Options
• Additional animation options

■ delay before starting
■ start at specific time
■ curve (ease in/out, ease in, ease out, linear)
■ repeat count
■ autoreverses (e.g. ping pong back and forth)

52Tuesday, January 19, 2010

View Animation Example
- (void)showAdvancedOptions {
 // assume polygonView and optionsView

}

[UIView beginAnimations:@”advancedAnimations” context:nil];
[UIView setAnimationDuration:0.3];

[UIView commitAnimations];

// make optionsView visible (alpha is currently 0.0)
optionsView.alpha = 1.0;

// move the polygonView down
CGRect polygonFrame = polygonView.frame;
polygonFrame.origin.y += 200;
polygonView.frame = polygonFrame;

53Tuesday, January 19, 2010

Knowing When Animations Finish
• UIView animations allow for a delegate
	 	 	 [UIView setAnimationDelegate:myController];

• myController will have callbacks invoked before and after
 - (void)animationWillStart:(NSString *)animationID
 context:(void *)context;

 - (void)animationDidStop:(NSString *)animationID
 finished:(NSNumber *)finished
 context:(void *)context;

• Can provide custom selectors if desired, for example
 [UIView setAnimationWillStartSelector:
 @selector(animationWillStart)];
 [UIView setAnimationDidStopSelector:
 @selector(animationDidStop)];

54Tuesday, January 19, 2010

How Does It Work?
• Is drawRect: invoked repeatedly?
• Do I have to run some kind of timer in order to drive the

animation?
• Is it magic?

55Tuesday, January 19, 2010

Core Animation
• Hardware accelerated rendering engine

• UIViews are backed by “layers”

• -drawRect: results are cached
■ Cached results used to render view
■ -drawRect: called only when contents change
■ Layers drawn from a separate render tree managed by separate

process

• Property animations done automatically by manipulating layers

56Tuesday, January 19, 2010

View Transforms
• Every view has a transform property

■ used to apply scaling, rotation and translation to a view

• Default “Identity transform”
• CGAffineTransform structure used to represent transform
• Use CG functions to create, modify transforms

CGAffineTransform Functions (just a small example set)

CGAffineTransformScale (transform, xScale, yScale)

CGAffineTransformRotate (transform, angle)

CGAffineTransformTranslate (transform, xDelta, yDelta)

57Tuesday, January 19, 2010

More Animation Information
• iPhone OS Programming Guide

■ “Modifying Views at Runtime” section

• Core Animation Programming Guide

58Tuesday, January 19, 2010

Assignment 3 Hints

59Tuesday, January 19, 2010

Saving State Across App Launches
• NSUserDefaults to read and write prefs & state

• Singleton object:
+ (NSUserDefaults *)standardUserDefaults;

• Methods for storing & fetching common types:
- (int)integerForKey:(NSString *)key;
- (void)setInteger:(int)value forKey:(NSString *)key;
	 	 	
- (id)objectForKey:(NSString *)key;
- (void)setObject:(id)value forKey:(NSString *)key;

• Find an appropriate time to store and restore your state

60Tuesday, January 19, 2010

Questions?

61Tuesday, January 19, 2010

