
CS193P - Lecture 3
iPhone Application Development

Custom Classes
Object Lifecycle
Autorelease
Properties

1Tuesday, January 12, 2010

Announcements
• Assignments 1A and 1B due Wednesday 1/13 at 11:59 PM

■ Enrolled Stanford students can email cs193p@cs.stanford.edu
with any questions

■ Submit early! Instructions on the website...
■ Delete the “build” directory manually, Xcode won’t do it

2Tuesday, January 12, 2010

Announcements
• Assignments 2A and 2B due Wednesday 1/20 at 11:59 PM

■ 2A: Continuation of Foundation tool
■ Add custom class
■ Basic memory management

■ 2B: Beginning of first iPhone application
■ Topics to be covered on Thursday, 1/14
■ Assignment contains extensive walkthrough

3Tuesday, January 12, 2010

Enrolled students & iTunes U
• Lectures have begun showing up on iTunes U
• Lead time is longer than last year

• Come to class!!
■ Lectures may not post in time for assignments

4Tuesday, January 12, 2010

Office Hours
• Paul’s office hours: Thursday 2-4, Gates B26B
• David’s office hours: Mondays 4-6pm: Gates 360

5Tuesday, January 12, 2010

Today’s Topics
• Questions from Assignment 1A or 1B?
• Creating Custom Classes
• Object Lifecycle
• Autorelease
• Objective-C Properties

6Tuesday, January 12, 2010

Custom Classes

7Tuesday, January 12, 2010

Design Phase
• Create a class

■ Person

• Determine the superclass
■ NSObject (in this case)

• What properties should it have?
■ Name, age, whether they can vote

• What actions can it perform?
■ Cast a ballot

8Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File

9Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File

9Tuesday, January 12, 2010

// instance variables
NSString *name;
int age;

Class interface declared in header file
#import <Foundation/Foundation.h>

@interface Person

@end

{

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (int)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

: NSObject

10Tuesday, January 12, 2010

Defining a class
A public header and a private implementation

Header File Implementation File

11Tuesday, January 12, 2010

Implementing custom class
• Implement setter/getter methods
• Implement action methods

12Tuesday, January 12, 2010

Class Implementation

@implementation Person

@end

- (int)age {
return age;

}
- (void)setAge:(int)value {

age = value;
}

//... and other methods

#import "Person.h"

13Tuesday, January 12, 2010

Calling your own methods

@implementation Person

@end

- (BOOL)canLegallyVote {

}

- (void)castBallot {

}

#import "Person.h"

14Tuesday, January 12, 2010

Calling your own methods

@implementation Person

@end

- (BOOL)canLegallyVote {

}

- (void)castBallot {

}

#import "Person.h"

return ([self age] >= 18);

14Tuesday, January 12, 2010

Calling your own methods

@implementation Person

@end

- (BOOL)canLegallyVote {

}

- (void)castBallot {

}

#import "Person.h"

if ([self canLegallyVote]) {
	 	 // do voting stuff
} else {
	 	 NSLog (@“I’m not allowed to vote!”);
}

return ([self age] >= 18);

14Tuesday, January 12, 2010

Superclass methods
• As we just saw, objects have an implicit variable named “self”

■ Like “this” in Java and C++

• Can also invoke superclass methods using “super”

- (void)doSomething {
// Call superclass implementation first
[super doSomething];

// Then do our custom behavior
int foo = bar;
// ...

}

15Tuesday, January 12, 2010

Object Lifecycle

16Tuesday, January 12, 2010

Object Lifecycle
• Creating objects
• Memory management
• Destroying objects

17Tuesday, January 12, 2010

Object Creation
• Two step process

■ allocate memory to store the object
■ initialize object state

+ alloc
■ Class method that knows how much memory is needed

- init
■ Instance method to set initial values, perform other setup

18Tuesday, January 12, 2010

Create = Allocate + Initialize
Person *person = nil;

person = [[Person alloc] init];

19Tuesday, January 12, 2010

 // allow superclass to initialize its state first
if (self = [super init]) {

}

return self;

Implementing your own -init method

@implementation Person

@end

- (id)init {

}

#import "Person.h"

age = 0;
name = @“Bob”;

// do other initialization...

20Tuesday, January 12, 2010

• Less specific ones typically call more specific with default values
- (id)init {
 return [self initWithName:@“No Name”];
}

- (id)initWithName:(NSString *)name {
 return [self initWithName:name age:0];
}

Multiple init methods
• Classes may define multiple init methods

- (id)init;
- (id)initWithName:(NSString *)name;
- (id)initWithName:(NSString *)name age:(int)age;

21Tuesday, January 12, 2010

Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

22Tuesday, January 12, 2010

Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

// What do we do with person when we’re done?

22Tuesday, January 12, 2010

Memory Management

Allocation Destruction

C

Objective-C

malloc free

alloc dealloc

• Calls must be balanced
■ Otherwise your program may leak or crash

• However, you’ll never call -dealloc directly
■ One exception, we’ll see in a bit...

23Tuesday, January 12, 2010

Reference Counting
• Every object has a retain count

■ Defined on NSObject
■ As long as retain count is > 0, object is alive and valid

• +alloc and -copy create objects with retain count == 1
• -retain increments retain count

• -release decrements retain count

• When retain count reaches 0, object is destroyed
• -dealloc method invoked automatically
■ One-way street, once you’re in -dealloc there’s no turning back

24Tuesday, January 12, 2010

Balanced Calls
Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Jimmy Jones”];
[person setAge:32];

[person castBallot];
[person doSomethingElse];

// When we’re done with person, release it
[person release]; // person will be destroyed here

25Tuesday, January 12, 2010

Reference counting in action
Person *person = [[Person alloc] init];

 Retain count begins at 1 with +alloc

[person retain];

 Retain count increases to 2 with -retain

[person release];

 Retain count decreases to 1 with -release

[person release];

 Retain count decreases to 0, -dealloc automatically called

26Tuesday, January 12, 2010

Messaging deallocated objects
Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

27Tuesday, January 12, 2010

Messaging deallocated objects
Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

[person doSomething]; // Crash!

27Tuesday, January 12, 2010

Messaging deallocated objects
Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

27Tuesday, January 12, 2010

Messaging deallocated objects
Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

person = nil;

27Tuesday, January 12, 2010

Messaging deallocated objects
Person *person = [[Person alloc] init];
// ...
[person release]; // Object is deallocated

person = nil;

[person doSomething]; // No effect

27Tuesday, January 12, 2010

Implementing a -dealloc method

@implementation Person

@end

- (void)dealloc {

}

#import "Person.h"

// Do any cleanup that’s necessary
// ...

// when we’re done, call super to clean us up
[super dealloc];

28Tuesday, January 12, 2010

Object Lifecycle Recap
• Objects begin with a retain count of 1
• Increase and decrease with -retain and -release
• When retain count reaches 0, object deallocated automatically
• You never call dealloc explicitly in your code

■ Exception is calling -[super dealloc]
■ You only deal with alloc, copy, retain, release

29Tuesday, January 12, 2010

// instance variables
NSString *name; // Person class “owns” the name
int age;

Object Ownership
#import <Foundation/Foundation.h>

@interface Person

@end

{

}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (int)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

: NSObject

30Tuesday, January 12, 2010

Object Ownership

@implementation Person

@end

#import "Person.h"

31Tuesday, January 12, 2010

Object Ownership

@implementation Person

@end

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

}

#import "Person.h"

31Tuesday, January 12, 2010

Object Ownership

@implementation Person

@end

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

}

#import "Person.h"

if (name != newName) {
 [name release];
 name = [newName retain];

// name’s retain count has been bumped up by 1
}

31Tuesday, January 12, 2010

Object Ownership

@implementation Person

@end

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

}

#import "Person.h"

31Tuesday, January 12, 2010

Object Ownership

@implementation Person

@end

- (NSString *)name {
return name;

}
- (void)setName:(NSString *)newName {

}

#import "Person.h"

if (name != newName) {
 [name release];
 name = [newName copy];

// name has retain count of 1, we own it
}

31Tuesday, January 12, 2010

Releasing Instance Variables

@implementation Person

@end

- (void)dealloc {

}

#import "Person.h"

 // Do any cleanup that’s necessary
[name release];

// when we’re done, call super to clean us up
[super dealloc];

32Tuesday, January 12, 2010

Autorelease

33Tuesday, January 12, 2010

Returning a newly created object
- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
	 	 	 	 	 	 	 	 	 	 firstName, lastName];

return result;
}

Wrong: result is leaked!

34Tuesday, January 12, 2010

Returning a newly created object
- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
	 	 	 	 	 	 	 	 	 	 firstName, lastName];

return result;
}

[result release];

Wrong: result is released too early!
Method returns bogus value

34Tuesday, January 12, 2010

Returning a newly created object
- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
	 	 	 	 	 	 	 	 	 	 firstName, lastName];

return result;
}

[result autorelease];

Just right: result is released, but not right away
Caller gets valid object and could retain if needed

34Tuesday, January 12, 2010

Autoreleasing Objects
• Calling -autorelease flags an object to be sent release at some

point in the future
• Let’s you fulfill your retain/release obligations while allowing an

object some additional time to live

• Makes it much more convenient to manage memory
• Very useful in methods which return a newly created object

35Tuesday, January 12, 2010

Method Names & Autorelease
• Methods whose names includes alloc, copy, or new

return a retained object that the caller needs to release

• All other methods return autoreleased objects

• This is a convention- follow it in methods you define!

NSMutableString *string = [[NSMutableString alloc] init];
// We are responsible for calling -release or -autorelease
[string autorelease];

NSMutableString *string = [NSMutableString string];
// The method name doesn’t indicate that we need to release it
// So don’t- we’re cool!

36Tuesday, January 12, 2010

How does -autorelease work?
• Object is added to current autorelease pool
• Autorelease pools track objects scheduled to be released

■ When the pool itself is released, it sends -release to all its objects

• UIKit automatically wraps a pool around every event dispatch

37Tuesday, January 12, 2010

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

Objects autoreleased
here go into pool

[object
autorelease];

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool released

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

 Pool
[object release];

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool released

Pool created

Objects autoreleased
here go into pool

[object release];

[object release];

38Tuesday, January 12, 2010

 Pool

Autorelease Pools (in pictures)

Launch app

Load main nib

Wait fo
r event

Handle event
Exit a

pp

App initia
lize

d

Pool released

Pool created

Objects autoreleased
here go into pool

38Tuesday, January 12, 2010

Hanging Onto an Autoreleased Object
• Many methods return autoreleased objects

■ Remember the naming conventions...
■ They’re hanging out in the pool and will get released later

• If you need to hold onto those objects you need to retain them
■ Bumps up the retain count before the release happens

name = [NSMutableString string];

// We want to name to remain valid!
[name retain];

// ...
// Eventually, we’ll release it (maybe in our -dealloc?)
[name release];

39Tuesday, January 12, 2010

Side Note: Garbage Collection
• Autorelease is not garbage collection
• Objective-C on iPhone OS does not have garbage collection

40Tuesday, January 12, 2010

Objective-C Properties

41Tuesday, January 12, 2010

Properties
• Provide access to object attributes
• Shortcut to implementing getter/setter methods
• Also allow you to specify:

■ read-only versus read-write access
■ memory management policy

42Tuesday, January 12, 2010

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

}

- (void)castBallot;
@end

// method declarations
- (NSString *) ;
- (void)setName:(NSString *)value;
- (int) ;
- (void)setAge:(int)age;
- (BOOL) ;

Defining Properties

name

age

canLegallyVote

43Tuesday, January 12, 2010

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

}

- (void)castBallot;
@end

// method declarations
- (NSString *) ;
- (void)setName:(NSString *)value;
- (int) ;
- (void)setAge:(int)age;
- (BOOL) ;

Defining Properties

name

age

canLegallyVote

43Tuesday, January 12, 2010

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

}

- (void)castBallot;
@end

// method declarations
- (NSString *) ;
- (void)setName:(NSString *)value;
- (int) ;
- (void)setAge:(int)age;
- (BOOL) ;

Defining Properties

name

age

canLegallyVote

43Tuesday, January 12, 2010

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

}

- (void)castBallot;
@end

// property declarations
@property int ;
@property (copy) NSString * ;
@property (readonly) BOOL ;

Defining Properties

name
age

canLegallyVote

43Tuesday, January 12, 2010

#import <Foundation/Foundation.h>

@interface Person : NSObject
{

// instance variables
NSString *name;
int age;

}

- (void)castBallot;
@end

// property declarations
@property int age;
@property (copy) NSString *name;
@property (readonly) BOOL canLegallyVote;

Defining Properties

44Tuesday, January 12, 2010

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {
return age;

}
- (void)setAge:(int)value {

age = value;
}
- (NSString *)name {
 return name;
}
- (void)setName:(NSString *)value {
 if (value != name) {
 [name release];
 name = [value copy];
 }
}

45Tuesday, January 12, 2010

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {
return age;

}
- (void)setAge:(int)value {

age = value;
}
- (NSString *)name {
 return name;
}
- (void)setName:(NSString *)value {
 if (value != name) {
 [name release];
 name = [value copy];
 }
}

45Tuesday, January 12, 2010

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {
return age;

}
- (void)setAge:(int)value {

age = value;
}
- (NSString *)name {
 return name;
}
- (void)setName:(NSString *)value {
 if (value != name) {
 [name release];
 name = [value copy];
 }
}

age

name

45Tuesday, January 12, 2010

@implementation Person

Synthesizing Properties

- (BOOL)canLegallyVote {
return (age > 17);

}

@end

@synthesize age;
@synthesize name;

46Tuesday, January 12, 2010

Property Attributes
• Read-only versus read-write

! @property int age; // read-write by default
	 @property (readonly) BOOL canLegallyVote;

• Memory management policies (only for object properties)

 @property (assign) NSString *name; // pointer assignment
	 @property (retain) NSString *name; // retain called
	 @property (copy) NSString *name; // copy called

47Tuesday, January 12, 2010

Property Names vs. Instance Variables
• Property name can be different than instance variable

 @interface Person : NSObject {
	 	 	 int numberOfYearsOld;
	 }

	 @property int age;

	 @end

	 @implementation Person

	 @synthesize age = numberOfYearsOld;

	 @end

48Tuesday, January 12, 2010

Properties
• Mix and match synthesized and implemented properties

• Setter method explicitly implemented
• Getter method still synthesized

@implementation Person
@synthesize age;
@synthesize name;

- (void)setAge:(int)value {
 age = value;

 // now do something with the new age value...
}

@end

49Tuesday, January 12, 2010

Properties In Practice
• Newer APIs use @property
• Older APIs use getter/setter methods
• Properties used heavily throughout UIKit APIs

■ Not so much with Foundation APIs

• You can use either approach
■ Properties mean writing less code, but “magic” can sometimes

be non-obvious

50Tuesday, January 12, 2010

Dot Syntax and self
• When used in custom methods, be careful with dot syntax for

properties defined in your class
• References to properties and ivars behave very differently

@interface Person : NSObject
{

NSString *name;
}
@property (copy) NSString *name;
@end

@implementation Person
- (void)doSomething {
	 	 name = @“Fred”; // accesses ivar directly!
	 	 self.name = @“Fred”; // calls accessor method
}

51Tuesday, January 12, 2010

Common Pitfall with Dot Syntax

@implementation Person
- (void)setAge:(int)newAge {
	 	 self.age = newAge;
}
@end

@implementation Person
- (void)setAge:(int)newAge {
	 	 [self setAge:newAge]; // Infinite loop!
}
@end

This is equivalent to:

What will happen when this code executes?

52Tuesday, January 12, 2010

Further Reading
• Objective-C 2.0 Programming Language

■ “Defining a Class”
■ “Declared Properties”

• Memory Management Programming Guide for Cocoa

53Tuesday, January 12, 2010

Questions?

54Tuesday, January 12, 2010

